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Abstract
This paper is concerned with the derivation of the retarded Green’s function
for a two-dimensional graphene layer in a perpendicular magnetic field in two
explicit, analytic forms, which we employ in obtaining a closed-form solution
for the Green’s function of a tightly confined magnetized graphene quantum
dot. The dot is represented by a δ(2)(r)-potential well and the system is subject
to Landau quantization in the normal magnetic field.

PACS numbers: 73.22.−f, 73.20.−r, 73.21.−b, 75.20.−g

1. Introduction

Over the past few years graphene, a single-atom-thick two-dimensional planar layer of carbon
atoms in a hexagonal honeycomb lattice, has been found to have remarkable device-friendly
properties [1, 2]. With mobility reaching 200 000 cm2 V−1 s

−1
, high electron density on the

order of 1013 cm−2, long mean free path l ∼ 400 nm, stability up to 3000 K and a quantum
hall effect at room temperature, it holds great promise for nanoelectronic applications. Such
applications include sensors, field-effect transistors, spin valves, electromechanical resonators,
quantum interference devices and others. Furthermore, as a planar layer of carbon atoms, it
is amenable to highly developed top-down CMOS compatible process flows, a substantial
advantage over carbon nanotubes.

The band structure of graphene gives rise to an electron/hole energy spectrum in the nature
of a massless relativistic ‘Dirac’ dispersion law, with individual particle energies proportional
to momentum, p = (px, py), at two inequivalent zero-gap points of the first Brillouin zone
where the electron and hole bands touch (‘Dirac’ nodes, K and K ′). The corresponding
Hamiltonian is given by (h̄ → 1 throughout)

H = γσν · p, (1)
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where σν = [σx, (sign(ν))σy] and σx, σy are Pauli spin matrices, associated with a ‘pseudo-
spin’ in the two-dimensional space of the electron and hole bands; also sign(ν) = 1 or −1 for
ν = K or K ′ and γ = 3αd/2 (α is the hopping parameter in the tight binding approximation
and d is the lattice spacing) plays the role of a constant Fermi velocity independent of density.
The Green’s function matrix of the infinite 2D graphene sheet, G, in this 2D pseudo-spin
representation, is determined by the equation(

i
∂

∂t
− H

)
G(r, r′; t, t ′) = Iδ(2)(r − r′)δ(t − t ′) (2)

(I is the 2 × 2 unit matrix).
To incorporate the magnetic field, B, (taken normal to the graphene plane), we make the

usual replacement p → p − eA, where A = 1
2 B × r for a uniform, constant magnetic field.

The requirement of gauge invariance (discussed in the appendix) leads to

G(r, r′; t, t ′) = C(r, r′)G′(r − r′; t − t ′), (3)

where the factor G′(r − r′; t − t ′) is spatially translationally invariant and gauge invariant,
satisfying the equation (R = r − r′, T = t − t ′, h̄ → 1)(

i
∂

∂T
− γσν ·

[
1

i

∂

∂R
− e

2
B × R

])
G′(R, T ) = Iδ(2)(R)δ(T ), (4)

while the factor C(r, r′) embodies all non-spatially-translationally-invariant structure and all
gauge dependence as

C(r, r′) = exp

[
ie

2h̄c
r · B × r′ − φ(r) + φ(r′)

]
(5)

(φ(r) is an arbitrary gauge function).

2. Landau quantization and the graphene Green’s function

2.1. Expansion in Laguerre polynomials

The role of Landau quantization in graphene electron dynamics is embedded in the solution
of equation (4) for G′(R, T ), which may be written in ω-frequency representation as (define
γν = γ sign(ν); also h̄ → 1 and c → 1)

[ω − γ σx
XY − γνσy
YX]G′(R, ω) = Iδ(X)δ(Y ), (6)

where we have defined


XY ≡ 1

i

∂

∂X
+

eB

2
Y and 
YX ≡ 1

i

∂

∂Y
− eB

2
X. (7)

The elements of the matrix equation, equation (6), are given by

ωG′
11 − [γ
XY − iγν
YX]G′

21 = δ(X)δ(Y ), (8)

ωG′
21 = [γ
XY + iγν
YX]G′

11 (9)

and

ωG′
22 − [γ
XY + iγν
YX]G′

12 = δ(X)δ(Y ), (10)

ωG′
12 = [γ
XY − iγν
YX]G′

22. (11)

2
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Equations (8) and (9) yield[
ω − 1

ω

{
γ 2

(

2

XY + 
2
YX

)
+ iγ γν(
XY 
YX − 
YX
XY )

}]
G′

11(X, Y ;ω) = δ(X)δ(Y ).

(12)

It is readily verified that


XY 
YX − 
YX
XY ≡ −1

i
eB, (13)

whence, using equation (7) to evaluate 
2
XY and 
2

YX, we obtain[
ω +

γ γν

ω
(eB)

]
G′

11(X, Y ;ω) +
γ 2

ω

{
∂2

∂X2
+

∂2

∂Y 2

−
(

eB

2

)2

[X2 + Y 2] +
eB

i

(
X

∂

∂Y
− Y

∂

∂X

)}
G′

11(X, Y ;ω)

= δ(X)δ(Y ). (14)

Defining the operator

LZ = 1

i

(
X

∂

∂Y
− Y

∂

∂X

)
= Lz + Lz′ (15)

(Lz is the angular momentum operator) a considerable simplification may be achieved by
noting that LZG′(R, T ) = 0. This may be shown most easily by choosing the gauge φ = 0,
for then LZG′(R, T ) = C−1(x, x′)LZG(x, t; x′, t ′) by virtue of the fact that LZC(x, x′) = 0.
The vanishing of

LZG(x, t; x′, t ′) = (Lz + Lz′)G(x, t; x′, t ′)

may be argued from the bilinear dependence of G(x, t; x′, t ′) on the field operators,
ψ(x, t), ψ+(x′, t ′), and the concomitant interpretation of G(x, t; x′, t ′) in terms of the creation
of a particle at (x, t) which is subsequently annihilated at (x′, t ′). The action of Lz on
G(x, t; x′, t ′) may be regarded as measuring the component of orbital angular momentum in
the direction of the magnetic field associated with the particle at the point of creation, while
the action of Lz′ must be regarded as measuring the negative of it at the point of annihilation
because Lz′ is acting on the adjoint operator. Therefore LZ = Lz + Lz′ measures the loss
of orbital angular momentum in the direction of the magnetic field suffered by the particle
during its propagation from (x, t) to (x′, t ′), and this must vanish because we are dealing
with a conserved quantity. This argument that LZG(x, t; x′, t ′) = 0 (and consequently
LZG′(R, T ) = 0) is readily verified by expanding the field operators in a series of angular
momentum eigenfunctions, and applying the operator LZ = Lz + Lz′ . (One can readily show
that similar considerations apply when φ �= 0.) Correspondingly, we have

LZG′
11(X, Y ;ω) = 0, (16)

and equation (14) may be rewritten as[
ω +

γ γν

ω
eB

]
G′

11(X, Y ;ω) +
γ 2

ω

{
∂2

∂X2
+

∂2

∂Y 2
−

(
eB

2

)2

[X2 + Y 2]

}
G′

11(X, Y ;ω)

= δ(X)δ(Y ). (17)

Writing equation (17) in the form

�G′
11(R,�) +

[
1

2M
∇2

R − M
�2

c

8
R2

]
G′

11(R,�) = δ(2)(R), (18)

3
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it is readily recognizable as the Green’s function equation for an isotropic two-dimensional
harmonic oscillator (with the impulsive Dirac-δ-function driving term having its source point
at the origin) in position–frequency representation. Its retarded solution in position–time (τ )
representation may be written as [3]

G′
11(R; τ) = −η+(τ )

M�c

4π sin(�cτ/2)
exp

{
iM�c[X2 + Y 2]

4 tan(�cτ/2)

}
. (19)

(η+(τ ) is the Heaviside unit step function.) Consequently,

G′
11(R;�) = −M�c

4π

∫ ∞

0
dτ

ei�τ

sin(�cτ/2)
exp

{
iM�c[X2 + Y 2]

4 tan(�cτ/2)

}
, (20)

with the identifications for ν = K

� = ω +
γ γν

ω
eB = ω +

γ 2

ω
eB, M = ω

2γ 2
, �c = 2γ 2

ω
eB (21)

leading to

G′
11(R;ω)K = −eB

4π

∫ ∞

0
dτ

exp[i(ω + γ 2eB/ω)τ ]

sin(γ 2eBτ/ω)
exp

{
ieB[X2 + Y 2]

4 tan(γ 2eBτ/ω)

}
. (22)

Setting T̃ ≡ τ/ω, we have∫ ∞

0
dτ · · · = ω

∫ ∞

0
dT̃ exp[iT̃ (ω2 + γ 2eB)]

1

sin(γ 2eBT̃ )
exp

{
ieB[X2 + Y 2]

4 tan(γ 2eBT̃ )

}
, (23)

and expanding the integrand as a generator [4] of Laguerre polynomials, Ln, we obtain∫ ∞

0
dτ · · · = 2iω exp

(
−eB

4
[X2 + Y 2]

)∫ ∞

0
dT̃ exp[iT̃ (ω2 + γ 2eB)]

×
∞∑

n=0

Ln

(
eB

2
[X2 + Y 2]

)
e−i(n+ 1

2 )2γ 2eBT̃ , (24)

with the result

G′
11(R;ω)K = eB

2π
ω exp

(
−eB

4
[X2 + Y 2]

) ∞∑
n=0

Ln

(
eB
2 [X2 + Y 2]

)
ω2 − 2nγ 2eB

. (25)

Similar treatment of equations (10) and (11) yields an equation for G′
22(X, Y ;ω)K as[

ω − 1

ω

{
γ 2

(

2

XY + 
2
YX

)
+ iγ γν(
YX
XY − 
XY 
YX)

}]
G′

22(X, Y ;ω)K

= δ(X)δ(Y ). (26)

Noting the hermiticity of the operators 
XY and 
YX, comparison of equation (26) with
equation (12) immediately shows that

G′
22(R;ω)K = G′∗

11(R;ω)K = eB

2π
ω exp

(
−eB

4
[X2 + Y 2]

) ∞∑
n=0

Ln

(
eB
2 [X2 + Y 2]

)
ω2 − 2nγ 2eB

, (27)

due to the reality of G′
11(R;ω)K .

The energy spectrum of the infinite graphene sheet, obtained from the frequency poles of
equation (27) is given by

ω′ = ±
√

2nγ 2eB, (28)

as was found earlier by Ando [5]. Moreover, G′
21 and G′

12 are readily obtained from G′
11 and

G′
22 using equations (9) and (11), respectively.

4



J. Phys. A: Math. Theor. 42 (2009) 225301 N J M Horing and S Y Liu

In the case ν = K ′, we have identifications in equation (20) as

� = ω +
γ γν

ω
eB = ω − γ 2

ω
eB, M = ω

2γ 2
, �c = 2γ 2

ω
eB (29)

and, proceeding as above, we obtain

G
′
11(R, ω)K ′ = G

′
22(R, ω)K ′ = eB

2π
ω exp

(
−eB

4
[X2 + Y 2]

) ∞∑
n=0

Ln

(
eB
2 [X2 + Y 2]

)
ω2 − 2(n + 1)γ 2eB

. (30)

This has energy pole positions for the infinite graphene sheet at

ω = ±
√

2(n + 1)γ 2eB, (31)

but the residues representing the relative strengths of the modes differ from those obtained
above by a unit shift of the index of the Ln

(
eB
2 [X2 + Y 2]

)
amplitude.

2.2. An alternative representation: Bessel wavefunction

Yet another interesting representation of the graphene Green’s function can be derived by
rewriting equation (18) in circular coordinates as (for either K or K ′)[

∂2

∂R2
+

1

R

∂

∂R
− M2�2

cR
2

4
+ 2M�

]
G′

11(R;�) = 2M
π

δ(R)

R
, (32)

since there is no angular dependence. For R > 0, equation (32) has the form of the ‘Bessel
wave equation’ [6],[

∂2

∂R2
+

1

R

∂

∂R
+ α2R2 + q2 − p2

R2

]
Z(R) = 0, (33)

with p = 0; α2 = −M2�2
c

/
4 and q2 = 2m�. The ‘Bessel wavefunction’ solutions [6] of

equation (33) for the case at hand, p = 0, are denoted by Z1 = J0(α, q, R) having small R
behavior as Z1 ∼= 1 + 0(R2); and the second solution is Z2 = Z1 ln(R) + 0(R2) for small R.
Thus, the solution of the homogeneous equation may be written as a linear combination of Z1

and Z2

G′
11(R;�) = AZ1(iM�c/2,

√
2M�,R) + BZ2(iM�c/2,

√
2M�,R), (34)

subject to the condition at small R → ε → 0+ arising from the Dirac-δ(R)-function of
equation (32):

∂

∂ε
G′

11(ε,�) ∼= M
πε

or G′
11(ε, ω) ∼= M

π
ln(ε). (35)

From this, it is clear that the coefficient B in equation (35) must be B = M/2. The coefficient
A must be chosen to prevent singular behavior as R → ∞. To examine the solutions further
for large R, we note that the term �G′

11 is negligible compared to
(
M�2

cR
/

8
)
G′

11 in this
limit, and equation (32) then becomes[

∂2

∂R2
+

1

R

∂

∂R
− M2�2

cR
2

4

]
G′

11(R,�) = 0. (36)

Carrying out an inverse Lommel transform [7] on equation (36), we obtain a modified Bessel
equation of order 0, yielding the large-R solution for G′

11 as

G′
11(R,�) ⇒ ÃI0

(
M�c

4
R2

)
+ B̃K0

(
M�c

4
R2

)
. (37)

5
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Here, I0 and K0 are modified Bessel functions [8] of the first and third kinds, respectively,
with the latter embodying a typical second solution log-singularity for finite R but falling off
for large R as K0(z) →

√
π
2z

e−z, whereas the former solution of the first kind diverges as
I0(z) →

√
π
2z

ez. On the basis of these considerations jointly with the log-requirement of
equation (35) we conclude that

G11(R;�) = M
π

Z2(iM�c/2,
√

2M�,R), (38)

with Z2 as the second solution of the Bessel wave equation. Clearly, G′
22(R;�) can be written

similarly by virtue of its equality with G′
11(R;�), equation (27), and G21 and G′

12 can be
determined as indicated above.

3. Graphene quantum dot: magnetic field Green’s function

We consider a two-dimensional delta-function potential to represent a ‘tightly’ confined
quantum dot at the origin as (h̄ → 1)

U(r) = αδ(2)(r) (α < 0). (39)

Here, α = ∫
d3r U(r) < 0 is essentially the product of the confining potential well depth and

the area of the dot. Such Dirac delta function model potentials have long been employed
in quantum-mechanical scattering theory, providing useful information [9]; as does the
present model δ-potential when the dot radius is the smallest length of the system under
consideration. The Green’s function for electron/hole propagation everywhere on the graphene
sheet, including the dot region, G′

dot, obeys the integral equation (frequency representation;
for either K or K ′)

G′
dot(r1, r2;ω) = G′(r1, r2;ω) + α

∫
d2r3 G′(r1, r3;ω)δ(2)(r3)G

′
dot(r3, r2;ω), (40)

with G′ as the bulk Landau-quantized electron Green’s function for the infinite 2D graphene
sheet, in the absence of the quantum well. Equation (40) may be rewritten as

G′
dot(r1, r2;ω) = G′(r1, r2;ω) + αG′(r1, 0;ω)G′

dot(0, r2;ω), (41)

and setting r1 → 0 throughout equation (41) we can solve algebraically for G′
dot(0, r2;ω),

which yields the full solution for G′
dot as (suppress ω)

G′
dot(r1, r2;ω) = G′(r1, r2;ω) + αG′(r1, 0;ω)[I − αG′(0, 0;ω)]−1G′(0, r2;ω), (42)

where I is the 2 × 2 unit matrix. The first term on the right describes propagation of Landau-
quantized graphene carriers on the infinite 2D host sheet with no quantum well, and the
second term introduces the effects of the quantum well ‘dot’. The 2 × 2 matrix inversion of
[I − αG′(0, 0;ω)] yields

[I − αG′(0, 0;ω)]−1 = �−1

(
1 − αG′

22 −αG′
12

−αG′
21 1 − αG′

11

)
, (43)

where

� = [(1 − αG′
11)(1 − αG′

22) − α2G′
12G

′
21]. (44)

In equations (43) and (44) all of the positional arguments of the elements of G′(0, 0;ω)

vanish. It is clear from equation (23) that for X = Y = 0, this leads to divergencies at the
lower limit of the T̃ -integral. Such divergence arises from the artificiality of representing
particle confinement by the δ(2)(r)-potential well to a single point at the origin. In reality,

6



J. Phys. A: Math. Theor. 42 (2009) 225301 N J M Horing and S Y Liu

the well has a small but finite radius a and the integral equation, equation (40), should be
re-examined and solved more carefully with U(r) occupying a small, finite region. In view of
this, it is reasonable to view the formal solution of equation (42) as being ‘smeared’ over the
radius a and make the replacement

G(0, 0;ω) ⇒ G(a;ω), (45)

which eliminates the divergence problem. In this approximation, which takes the radius
a to be the smallest length parameter of the system, it may be noted that G′

12 ∼ G′
21 ∼

(γ eBa/ω)G′
11 = (γ eBa/ω)G′

22, so that G′
12 and G′

21 can be neglected in comparison with
G′

11 = G′
22 due to the smallness of a.

4. Summary

We have derived graphene Green’s functions in a quantizing magnetic field perpendicular
to the 2D graphene sheet. For the infinite 2D sheet, we determined the Green’s function
elements G′

11 = G′
22 explicitly, in closed form in terms of elementary functions in direct time

representation in equation (19) for both Dirac nodes, K and K ′. The off-diagonal terms are
readily obtained using equations (9) and (11), but are quite small in applications of interest
for a quantum dot. We have also Fourier transformed the Green’s function into frequency
representation and expanded it in terms of Languerre polynomials (equations (24) and (30)).
Separate from this, we also developed an alternative expression for the infinite-sheet 2D
graphene Green’s function in frequency representation in terms of the second solution of the
Bessel wave equation.

Furthermore, we have determined the Green’s function for a graphene quantum dot in a
normal magnetic field using a potential modeled by U(r) = αδ(2D)(r) for a ‘tightly’ bound
graphene quantum dot. An exact closed form solution for this Green’s function is exhibited in
equations (42) and (43) in terms of the infinite 2D sheet graphene Green’s functions discussed
in the preceding paragraph. A divergence problem encountered was ‘regularized’ using an
approximation which is valid for a dot whose radius is the smallest length parameter of the
system, which is, in fact, the case of interest. The result obtained here for the graphene
quantum dot Green’s function in a quantizing magnetic field has been employed in an
examination of the spectrum of energy states of this system by analyzing the frequency poles of
equations (42)–(45), as given by

det(I − αG′(a;ω)) = 0, (46)

and the dot spectrum was found to be ‘splintered’ by Landau quantization into infinitely many
eigenstates [10]. Of course, all the Green’s functions determined here can be used extensively
in analyzing the dynamics and interactions of graphene sheets and dots in a normal magnetic
field in a plethora of applications.

Appendix. Gauge considerations

In the presence of a magnetic field, B(x), even a uniform one, the momentum direction is not
conserved and the Green’s function depends on (x + x′) as well as (x − x′). To examine
this dependence we start by considering a gauge transformation of the vector potential,
A(x, t) → A(x, t) + ∇λ(x, t) and φ(x, t) → φ(x, t) − 1

c
∂λ(x, t)/∂t . Corresponding to

this, invariance of the Hamiltonian then requires that ψ(x, t) → e
ieλ(x,t)

h̄c ψ(x, t), and in view of
the bilinear structure of the Green’s function, it must change in accordance with

G(x, t; x′, t ′) → G′(x, t; x′, t ′) = exp

(
ie

h̄c
[λ(x, t) − λ(x′, t ′)]

)
G(x, t; x′, t ′). (A.1)

7
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Writing the Schrödinger operator as � = i ∂
∂t

− H , we have the Green’s function equation for
an electron in a constant magnetic field in the form,

�(∇, A(x), B(x))G(x, t; x′, t ′) = δ(3)(x − x′)δ(t − t ′), (A.2)

or, equivalently,

�(∇, A(x) + ∇λ(x), B(x))G′
1(x, t; x′, t ′) = δ(3)(x − x′)δ(t − t ′). (A.3)

Anticipating application to a uniform B-field (as well as constant in time), we choose λ to
depend on both x and x′, such that

A(x) + ∇λ(x, x′) = 1
2 B(x) × (x − x′). (A.4)

The advantage of this choice is that equation (A.3) becomes

�
(∇, 1

2 B(x) × (x − x′)
)
G′(x, t; x′, t ′) = δ(3)(x − x′)δ(t − t ′), (A.5)

and if B(x) → B is a constant vector, in both space and time, then the structure of this equation
mandates that G′ depends on (x − x′) to the exclusion of (x + x′), and also on (t − t ′) to the
exclusion of (t + t ′):

G′(x, t; x′, t ′) = G′(x − x′; t − t ′) = exp

(
ie

h̄c
[λ(x, x′) − λ(x′, x′)]

)
G(x, t; x′, t ′). (A.6)

Apart from the introduction of the source point x′, equation (A.4) reflects the fact that for a
uniform magnetic field, A(x) can differ from 1

2 B × x by at most a gauge transformation,

A(x) + ∇φ(x) = 1
2 B × x, (A.7)

φ(x) being the gauge function. An equation for λ(x, x′) may be obtained by subtracting
equation (A.7) from equation (A.4), with the result,

∇[λ(x, x′) − φ(x)] = − 1
2 B × x′, (A.8)

which is readily line-integrated as

λ(x, x′) = −1

2

∫
dx · B × x′ + φ(x) = −1

2
x · B × x′ + φ(x). (A.9)

Thus, both the (x + x′) and gauge dependences of G are explicitly given in the factor C(x, x′),

G(x, t; x′, t ′) = C(x, x′)G′(x − x′; t − t ′), (A.10)

where

C(x, x′) = exp

[
i

e

2h̄c
x · B × x′ − φ(x) + φ(x′)

]
(A.11)

is the factor accounting for the changing direction of the momentum vector (circularity of the
path) in a magnetic field, with the magnitude of momentum conserved.

As noted in equation (A.6), the Green’s function factor G′ is spatially translationally
invariant since in place of A we have 1

2 B × (x − x′). It is also independent of gauge.
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